English

Differentiate the following w.r.t. x : cos-1(ex- e-xex+ e-x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`

Sum

Solution

Let y = `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`

= `cos^-1[(e^x - 1/e^x)/(e^x + 1/e^x)]`

= `cos^-1((e^(2x) - 1)/(e^(2x) + 1))`
Put ex = tanθ.
Then θ = tan–1(ex)

∴ y = `cos^-1((tan^2θ - 1)/(tan^2θ + 1))`

= `cos^-1[-((1 - tan^2θ)/(1 + tan^2θ))]`

= cos–1(– cos2θ)
= cos–1[cos(π – 2θ)]
= π – 2θ
= π – 2tan–1(ex)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[pi - 2tan^-1(e^x)]`

= `"d"/"dx"(pi) - 2"d"/"dx"[tan^-1(e^x)]`

= `0 - 2 xx (1)/(1 + (e^x)^2)."d"/"dx"(e^x)`

= `(-2)/(1 + e^(2x)) xx e^x`

= `-(2e^x)/(1 + e^(2x)`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 30]

RELATED QUESTIONS

Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×