Advertisements
Advertisements
Question
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Solution
Let y = `x^(x^x) + e^(x^x)`
Put u = `x^(x^x) and v = e^(x^(x)`
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ...(1)
Take u = `x^(x^(x)`
∴ log u = `logx^(x^(x)) = x^x*logx`
Differentiating both sides w.r.t. x, we get
`1/u*"du"/"dx" = "d"/"dx"(x^x*logx)`
= `x^x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x^x)`
= `x^x xx 1/x + (logx)*"d"/"dx"(x^x)` ...(2)
To find `"d"/"dx"(x^x)`
Let ω = xx
Then log ω = xlogx
Differentiating both sides w.r.t. x, we get
`1/omega*"dω"/"dx" = "d"/"dx"(xlogx)`
= `x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x)`
= `x xx (1)/x + (logx) xx 1`
∴ `"dω"/"dx" = omega(1 + logx)`
∴ `"d"/"dx"(x^x) = x^x(1 + logx)` ...(3)
∴ from (2),
`1/u*"du"/"dx" = x^x xx (1)/x + (logx)*x^x(1 + logx)`
∴ `"du"/"dx" = y[x^x xx 1/x + (logx)*x^x(1 + logx)]`
= `x^(x^x)*x^x[1/x + (logx)*(1 + logx)]`
= `x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)]` ...(4)
Also, v = `e^(x^(x)`
∴ `"dv"/"dx" = "d"/"dx"(e^(x^x))`
= `e^(x^(x))*"d"/"dx"(e^(x^x))`
= `e^(x^(x))*x^x(1 + logx)` ...(5) [By (3)]
From (1), (4) and (5), we get
`"dy"/"dx" = x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)] + e^(x^x)*x^x(1 + logx)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin xx)
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`