Advertisements
Advertisements
Question
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Solution
Let y = `(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
= `(e^(2x) - 1/e^(2x))/(e^(2x) + 1/e^(2x))`
= `(e^(4x) - 1)/(e^(4x) + 1)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((e^(4x) - 1)/(e^(4x) + 1))`
= `((e^(4x) + 1)."d"/"dx"(e^(4x) - 1) - (e^(4x) - 1)."d"/"dx"(e^(4x) + 1))/(e^(4x) + 1)^2`
= `((e^(4x) + 1)[e^(4x)."d"/"dx"(4x) - 0] - (e^(4x) - 1)[e^(4x)."d"/"dx"(4x) + 0])/(e^(4x) + 1)^2`
= `((e^(4x) + 1).e^(4x) xx 4 - (e^(4x) - 1).e^(4x) xx 4)/(e^(4x) + 1)^2`
= `(4e^(4x)(e^(4x) + 1 - e^(4x) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(cancel(e^(4x)) + 1 - cancel(e^(4x)) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(1 + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(2))/(e^(4x) + 1)^2`
= `(8e^(4x))/(e^(4x) + 1)^2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.