English

Differentiate the following w.r.t.x: e2x-e-2xe2x+e-2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`

Sum

Solution

Let y = `(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`

= `(e^(2x) - 1/e^(2x))/(e^(2x) + 1/e^(2x))`

= `(e^(4x) - 1)/(e^(4x) + 1)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((e^(4x) - 1)/(e^(4x) + 1))`

= `((e^(4x) + 1)."d"/"dx"(e^(4x) - 1) - (e^(4x) - 1)."d"/"dx"(e^(4x) + 1))/(e^(4x) + 1)^2`

= `((e^(4x) + 1)[e^(4x)."d"/"dx"(4x) - 0] - (e^(4x) - 1)[e^(4x)."d"/"dx"(4x) + 0])/(e^(4x) + 1)^2`

= `((e^(4x) + 1).e^(4x) xx 4 - (e^(4x) - 1).e^(4x) xx 4)/(e^(4x) + 1)^2`

= `(4e^(4x)(e^(4x) + 1 - e^(4x) + 1))/(e^(4x) + 1)^2`

= `(4e^(4x)(cancel(e^(4x)) + 1 - cancel(e^(4x)) + 1))/(e^(4x) + 1)^2`

= `(4e^(4x)(1  + 1))/(e^(4x) + 1)^2`

= `(4e^(4x)(2))/(e^(4x) + 1)^2`

= `(8e^(4x))/(e^(4x) + 1)^2`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate y = etanx w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×