Advertisements
Advertisements
Question
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Solution
Using `log(a/b)` = log a − log b
log ab = b log a
`y = log(sqrt(1 + cos ((5x)/2))) - log(sqrt(1 - cos ((5x)/2)))`
`y = log[1 + cos ((5x)/2)]^(1/2) - log[1 - cos((5x)/2)]^(1/2)`
`y = (1)/(2)log[1 + cos((5x)/2)] - (1)/(2)log[(1 - cos((5x)/2)]`
Differentiating w.r.t. x
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × "d"/"dx"(1 + cos (5x)/2) - 1/2 × 1/(1 - cos((5x)/2)) × "d"/"dx"(1 - cos (5x)/(2))`
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × [0 - sin ((5x)/2)] . 5/2 "d"/"dx" x - 1/2 × 1/(1 - cos((5x)/2)) × [0 + sin ((5x)/2)] . 5/2 "d"/"dx" x`
`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × - sin ((5x)/2) . 5/2 - 1/2 × 1/(1 - cos((5x)/2)) × sin ((5x)/2) . 5/2`
`"dy"/"dx" = [- 5sin((5x)/2)]/[4(1 + cos((5x)/2))] - [5sin((5x)/2)]/[4(1 - cos((5x)/2))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. [1/(1 + cos((5x)/(2))) + 1/(1 - cos((5x)/(2)))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. [(1 - cos ((5x)/2) + 1 + cos ((5x)/2)]/(1^2 - cos^2 ((5x)/2))]`
`"dy"/"dx" = [- 5sin((5x)/2)]/4. 2/(sin^2((5x)/2))` ...[ ∵ 1 – cos2x = sin2x]
`"dy"/"dx" = - 5/2 . 1/(sin((5x)/2))`
`"dy"/"dx" = - 5/2 . "cosec" ((5x)/2)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.