English

Differentiate the following w.r.t.x: (1+cos(5x2)1-cos(5x2)) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`

Sum

Solution

Using `log(a/b)` = log a − log b

log ab = b log a

`y = log(sqrt(1 + cos ((5x)/2))) - log(sqrt(1 - cos ((5x)/2)))`

`y = log[1 + cos ((5x)/2)]^(1/2) -  log[1 - cos((5x)/2)]^(1/2)`

`y = (1)/(2)log[1 + cos((5x)/2)] - (1)/(2)log[(1 - cos((5x)/2)]`

Differentiating w.r.t. x

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × "d"/"dx"(1 + cos  (5x)/2) - 1/2 × 1/(1 - cos((5x)/2)) × "d"/"dx"(1 - cos  (5x)/(2))`

 

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × [0 - sin ((5x)/2)] . 5/2 "d"/"dx" x - 1/2 × 1/(1 - cos((5x)/2)) × [0 + sin ((5x)/2)] . 5/2 "d"/"dx" x`

 

`"dy"/"dx" = 1/2 × 1/(1 + cos((5x)/2)) × - sin ((5x)/2) . 5/2 - 1/2 × 1/(1 - cos((5x)/2)) × sin ((5x)/2) . 5/2`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/[4(1 + cos((5x)/2))] - [5sin((5x)/2)]/[4(1 - cos((5x)/2))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. [1/(1 + cos((5x)/(2))) + 1/(1 - cos((5x)/(2)))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. [(1 - cos ((5x)/2) + 1 + cos ((5x)/2)]/(1^2 - cos^2 ((5x)/2))]`

 

`"dy"/"dx" = [- 5sin((5x)/2)]/4. 2/(sin^2((5x)/2))`  ...[ ∵ 1 – cos2x = sin2x]

 

`"dy"/"dx" = - 5/2 . 1/(sin((5x)/2))`

 

`"dy"/"dx" = - 5/2 . "cosec" ((5x)/2)`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x : (sin xx)


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


Differentiate y = etanx w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×