Advertisements
Advertisements
Question
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Solution
Let y = `cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
= `1 + sin ((4x)/3)`
= `1 + cos(pi/2 - (4x)/3)`
= `2cos^2(pi/4 - (2x)/3)`
∴ `sqrt(1 + sin((4x)/3)) = sqrt(2)cos(pi/4 - (2x)/3)`
Also, `1 - sin ((4x)/3)`
= `1 - cos(pi/2 - (4x)/3)`
= `2sin^2(pi/4 - (2x)/3)`
∴ `sqrt(1 - sin((4x)/3)) = sqrt(2)sin(pi/4 - (2x)/3)`
∴ `(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin((4x)/3) - sqrt(1 - sin((4x)/3)`
= `(sqrt(2)cos(pi/4 - (2x)/3) + sqrt(2)sin(pi/4 - (2x)/3))/(sqrt(2)cos(pi/4 - (2x)/3) - sqrt(2)sin(pi/4 - (2x)/3)`
= `(cos(pi/4 - (2x)/3) + sin(pi/4 - (2x)/3))/(cos(pi/4 - (2x)/3) - sin(pi/4 - (2x)/3)`
= `(1 + tan(pi/4 - (2x)/3))/(1 - tan(pi/4 - (2x)/3)) ...["Dividing by" cos(pi/4 - (2x)/3)`
= `(tan pi/4 + tan(pi/4 - (2x)/3))/(1 - tan pi/4. tan(pi/4 - (2x)/3)) ...[∵ tan pi/4 = 1]`
= `tan[pi/4 + pi/4 - (2x)/3]`
= `tan(pi/2 - (2x)/3)`
= `cot((2x)/3)`
∴ y = `cot^-1[cot((2x)/3)] = (2x)/(3)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((2x)/3)`
= `(2)/(3)"d"/"dx"(x)`
= `(2)/(3) xx 1`
= `(2)/(3)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If f(x) is odd and differentiable, then f′(x) is
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.