Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
उत्तर
Let y = `cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
= `1 + sin ((4x)/3)`
= `1 + cos(pi/2 - (4x)/3)`
= `2cos^2(pi/4 - (2x)/3)`
∴ `sqrt(1 + sin((4x)/3)) = sqrt(2)cos(pi/4 - (2x)/3)`
Also, `1 - sin ((4x)/3)`
= `1 - cos(pi/2 - (4x)/3)`
= `2sin^2(pi/4 - (2x)/3)`
∴ `sqrt(1 - sin((4x)/3)) = sqrt(2)sin(pi/4 - (2x)/3)`
∴ `(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin((4x)/3) - sqrt(1 - sin((4x)/3)`
= `(sqrt(2)cos(pi/4 - (2x)/3) + sqrt(2)sin(pi/4 - (2x)/3))/(sqrt(2)cos(pi/4 - (2x)/3) - sqrt(2)sin(pi/4 - (2x)/3)`
= `(cos(pi/4 - (2x)/3) + sin(pi/4 - (2x)/3))/(cos(pi/4 - (2x)/3) - sin(pi/4 - (2x)/3)`
= `(1 + tan(pi/4 - (2x)/3))/(1 - tan(pi/4 - (2x)/3)) ...["Dividing by" cos(pi/4 - (2x)/3)`
= `(tan pi/4 + tan(pi/4 - (2x)/3))/(1 - tan pi/4. tan(pi/4 - (2x)/3)) ...[∵ tan pi/4 = 1]`
= `tan[pi/4 + pi/4 - (2x)/3]`
= `tan(pi/2 - (2x)/3)`
= `cot((2x)/3)`
∴ y = `cot^-1[cot((2x)/3)] = (2x)/(3)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((2x)/3)`
= `(2)/(3)"d"/"dx"(x)`
= `(2)/(3) xx 1`
= `(2)/(3)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin xx)
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.