मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : cot-1[1+sin (4x3)+1-sin (4x3)1+sin (4x3)-1-sin (4x3)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`

बेरीज

उत्तर

Let y = `cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`

= `1 + sin ((4x)/3)`

= `1 + cos(pi/2 - (4x)/3)`

= `2cos^2(pi/4 - (2x)/3)`

∴ `sqrt(1 + sin((4x)/3)) = sqrt(2)cos(pi/4 - (2x)/3)`

Also, `1 - sin ((4x)/3)`

= `1 - cos(pi/2 - (4x)/3)`

= `2sin^2(pi/4 - (2x)/3)`

∴ `sqrt(1 - sin((4x)/3)) = sqrt(2)sin(pi/4 - (2x)/3)`

∴ `(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin((4x)/3) - sqrt(1 - sin((4x)/3)`

= `(sqrt(2)cos(pi/4 - (2x)/3) + sqrt(2)sin(pi/4 - (2x)/3))/(sqrt(2)cos(pi/4 - (2x)/3) - sqrt(2)sin(pi/4 - (2x)/3)`

= `(cos(pi/4 - (2x)/3) + sin(pi/4 - (2x)/3))/(cos(pi/4 - (2x)/3) - sin(pi/4 - (2x)/3)`

= `(1 + tan(pi/4 - (2x)/3))/(1 - tan(pi/4 - (2x)/3))                                ...["Dividing by" cos(pi/4 - (2x)/3)` 

= `(tan  pi/4 + tan(pi/4 - (2x)/3))/(1 - tan  pi/4. tan(pi/4 - (2x)/3))                        ...[∵ tan  pi/4 = 1]`

= `tan[pi/4 + pi/4 - (2x)/3]`

= `tan(pi/2 - (2x)/3)`

= `cot((2x)/3)`

∴ y = `cot^-1[cot((2x)/3)] = (2x)/(3)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((2x)/3)`

= `(2)/(3)"d"/"dx"(x)`

= `(2)/(3) xx 1`

= `(2)/(3)`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.2 [पृष्ठ ३०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x : (sin xx)


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×