Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
उत्तर
Let `y = tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
`y = tan^(−1)[(2^2 . 2^x)/(1 − 3(4^x))]`
`y = tan^(−1)[(4.2^x)/(1 − 3(2^x)^2)]`
`y = tan^(−1)[(3 × 2^x + 1 × 2^x)/(1 − 3.2^x × 1.2^x)] ...[tan^(−1) x + tan^(−1) y = tan^(-1) ((x + y)/(1 - xy))]`
y = tan–1(3.2x) + tan–1(2x)
Differentiating w.r.t. x, we get
`dy/dx = d/dx [tan^-1 (3.2^x) + tan^-1(2^x)]`
`dy/dx = d/dx [tan^-1(3.2^x)] + d/dx [tan^-1 (2^x)]`
`dy/dx = (1)/(1 + (3.2^x)^2). d/dx (3.2^x) + (1)/(1 + (2^x)^2). d/dx (2^x)`
`dy/dx = (1)/(1 + 9(2^(2x))) × 3 × 2^xlog2 + (1)/(1 + 2^(2x)) × 2^xlog2`
`dy/dx = 2^xlog2[(3)/(1 + 9(2^(2x))) + (1)/(1 + 2^(2x))]`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = etanx w.r. to x
If f(x) is odd and differentiable, then f′(x) is
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
Derivative of (tanx)4 is ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If y = cosec x0, then `"dy"/"dx"` = ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If y = log (sec x + tan x), find `dy/dx`.