Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
उत्तर
Let `y = tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
`y = tan^(−1)[(2^2 . 2^x)/(1 − 3(4^x))]`
`y = tan^(−1)[(4.2^x)/(1 − 3(2^x)^2)]`
`y = tan^(−1)[(3 × 2^x + 1 × 2^x)/(1 − 3.2^x × 1.2^x)] ...[tan^(−1) x + tan^(−1) y = tan^(-1) ((x + y)/(1 - xy))]`
y = tan–1(3.2x) + tan–1(2x)
Differentiating w.r.t. x, we get
`dy/dx = d/dx [tan^-1 (3.2^x) + tan^-1(2^x)]`
`dy/dx = d/dx [tan^-1(3.2^x)] + d/dx [tan^-1 (2^x)]`
`dy/dx = (1)/(1 + (3.2^x)^2). d/dx (3.2^x) + (1)/(1 + (2^x)^2). d/dx (2^x)`
`dy/dx = (1)/(1 + 9(2^(2x))) × 3 × 2^xlog2 + (1)/(1 + 2^(2x)) × 2^xlog2`
`dy/dx = 2^xlog2[(3)/(1 + 9(2^(2x))) + (1)/(1 + 2^(2x))]`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
y = {x(x - 3)}2 increases for all values of x lying in the interval.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.