हिंदी

Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______. -

Advertisements
Advertisements

प्रश्न

Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.

विकल्प

  • AP

  • GP

  • HP

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in AP.

Explanation:

Let f(x) = ax2 + bx + c

f(1) = f(–1)

`\implies` a + b + c = a – b + c

`\implies` b = 0

∴ f(x) = ax2 + c

Differentiating w.r.t.x, f’(x) = 2ax

∴ f’(a1) = 2aa1,

f’(a2) = 2aa2

and f’(a3) = 2aa3

Assume that, f’(a1), f’(a2) and f’(a3) are in AP, then 

2f’(a2) = f’(a1) + f’(a3)

`\implies` 2 . 2aa2 = 2aa1 + 2aa3

`\implies` 2a2 = a1 + a3

So, a1, a2, a3 are also in AP.

∴ f’(a1), f’(a2), f’(a3) are in AP.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×