Advertisements
Advertisements
प्रश्न
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
पर्याय
AP
GP
HP
None of these
MCQ
रिकाम्या जागा भरा
उत्तर
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in AP.
Explanation:
Let f(x) = ax2 + bx + c
f(1) = f(–1)
`\implies` a + b + c = a – b + c
`\implies` b = 0
∴ f(x) = ax2 + c
Differentiating w.r.t.x, f’(x) = 2ax
∴ f’(a1) = 2aa1,
f’(a2) = 2aa2
and f’(a3) = 2aa3
Assume that, f’(a1), f’(a2) and f’(a3) are in AP, then
2f’(a2) = f’(a1) + f’(a3)
`\implies` 2 . 2aa2 = 2aa1 + 2aa3
`\implies` 2a2 = a1 + a3
So, a1, a2, a3 are also in AP.
∴ f’(a1), f’(a2), f’(a3) are in AP.
shaalaa.com
Differentiation
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?