हिंदी

Differentiate the following w.r.t. x : cos-1(3cosx-sinx2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`

योग

उत्तर

Let y = `cos^-1((sqrt(3)cosx - sinx)/(2))`

= `cos^-1[(cosx)((sqrt3)/2) - (sinx)(1/2)]`

= `cos^-1(cosx cos  pi/6 - sinx sin  pi/6)    ...[∵ cos  pi/6 = sqrt(3)/2, sin  pi/6 = (1)/(2)]`

= `cos^-1[cos(x + pi/6)]`

= `x + pi/(6)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(x + pi/6)`

= `"d"/"dx"(x) + "d"/"dx"(pi/6)`
= 1 + 0
= 1.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.2 [पृष्ठ ३०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×