Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
उत्तर
Let `y = sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
`y = sin^-1[(4^x.4^(1/2))/(1 + (2^2)^(2x))]`
`y = sin^-1((2.4^x)/(1 + 4^(2x)))`
Put 4x = tan θ, Then θ = tan–1(4x)
∴ `y = sin^-1((2tanθ)/(1 + tan^2 θ))`
∴ y = sin–1(sin 2θ)
∴ y = 2θ
∴ y = 2tan–1 (4x)
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [2tan^-1 (4^x)]`
`dy/dx = 2 d/dx [tan^-1(4^x)]`
`dy/dx = 2 × 1/(1 + (4^x)^2). d/dx (4^x)`
`dy/dx = (2)/(1 + 4^(2x)) xx 4^xlog4`
`dy/dx = (2.4^xlog4)/(1 + 4^(2x))`
Note: The answer can also be written as :
`dy/dx = (4^(1/2).4^xlog4)/(1 + 4^(2x))`
`dy/dx = (4^(x + 1/2).log4)/(1 + 4^(2x))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
Derivative of (tanx)4 is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
If y = log (sec x + tan x), find `dy/dx`.