Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
उत्तर
Let y = `(1 + sinx°)/(1 − sinx°)`
y = `(1 + sin((πx)/180))/(1 − sin((πx)/180)) ...[∵ x° = ((pix)/180)^°]`
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [(1 + sin((πx)/180))/(1 − sin((πx)/180))]`
`dy/dx = ([1 − sin((πx)/180)]. d/dx [1 + sin((πx)/180)] − [1 + sin((πx)/180)]. d/dx [1 − sin((πx)/180)])/[1 − sin((πx)/180)]^2`
`dy/dx = ([1 − sin((πx)/(180))].[0 + cos((πx)/(180)). d/dx ((πx)/(180)) - [1 + sin((πx)/(180))].[0 − cos((πx)/(180)). d/dx ((πx)/(180))]))/[1 − sin((πx)/180)]^2`
`dy/dx = ((1 − sinx°)[(cosx°) × π/(180) × 1] - (1 + sinx°)[(− cosx°) × π/(180) × 1])/(1 − sinx°)^2`
`dy/dx = (π/(180)cosx°(1 − sinx° + 1 + sinx°))/(1 - sinx°)^2`
`dy/dx = (πcosx°)/(90(1 − sinx°)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If f(x) is odd and differentiable, then f′(x) is
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
Derivative of (tanx)4 is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`