Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
उत्तर
Let y = `(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
= `(e^(2x) - 1/e^(2x))/(e^(2x) + 1/e^(2x))`
= `(e^(4x) - 1)/(e^(4x) + 1)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((e^(4x) - 1)/(e^(4x) + 1))`
= `((e^(4x) + 1)."d"/"dx"(e^(4x) - 1) - (e^(4x) - 1)."d"/"dx"(e^(4x) + 1))/(e^(4x) + 1)^2`
= `((e^(4x) + 1)[e^(4x)."d"/"dx"(4x) - 0] - (e^(4x) - 1)[e^(4x)."d"/"dx"(4x) + 0])/(e^(4x) + 1)^2`
= `((e^(4x) + 1).e^(4x) xx 4 - (e^(4x) - 1).e^(4x) xx 4)/(e^(4x) + 1)^2`
= `(4e^(4x)(e^(4x) + 1 - e^(4x) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(cancel(e^(4x)) + 1 - cancel(e^(4x)) + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(1 + 1))/(e^(4x) + 1)^2`
= `(4e^(4x)(2))/(e^(4x) + 1)^2`
= `(8e^(4x))/(e^(4x) + 1)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`