Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : (sin x)x
उत्तर
Let y = (sin x)x
Then log y = log(sin x)x = x.log(sin x)
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = "d"/"dx"[x.log(sinx)]`
= `x."d"/"dx"[log(sinx)] + log(sinx)."d"/"dx"(x)`
= `x xx (1)/sinx."d"/"dx"(sinx) + log(sinx) xx 1`
∴ `"dy"/"dx" = y[x xx 1/sinx. cosx + log(sinx)]`
= (sin x)x[x cotx + log (sinx)].
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.