हिंदी

Show that dydxdydx=yx in the following, where a and p are constants : sin(x3-y3x3+y3) = a3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 

योग

उत्तर

`sin((x^3 - y^3)/(x^3 + y^3))` = a3 

`(x^3 - y^3)/(x^3 + y^3)` = sina3 = b

`(x^3 - y^3)/(x^3 + y^3)` = b

x3 – y3 = b(x3 + y3)
x3 – y3 = bx3 + by3
x3 – bx3 = by3 + y3
x3(1 – b) = y3(b + 1)
`y^3/x^3 = (1 - b)/(1 + b)` = e

`y^3/x^3` = c   .....(1)
y3 = cx3
Differentiating both sides w.r.t. x, we get
`3y^2"dy"/"dx"` = c.3x2

`(y^2dy)/(dx)` = cx2

`"dy"/"dx" c x^2/y^2`

`"dy"/"dx" = y^3/x^3. x^2/y^2` ....from(1)

`"dy"/"dx" = y/x`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


Derivative of (tanx)4 is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×