हिंदी

If y = e1+logx then find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 

योग

उत्तर

y = `"e"^(1 + logx)` 

= `"e"*"e"^(logx)`

= e. x

∴ `("d"y)/("d"x)` = e. 1 = e

OR

y = `"e"^(1 + logx)` 

`("d"y)/("d"x) = "d"/("d"x)("e"^(1 + logx))`

= `"e"^(1 + logx) * "d"/("d"x)(1 + log x)`

= `"e"^(1 + logx) * (0 + 1/x)`

= `("e"^(1 + log x))/x`

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - Very Short Answers

संबंधित प्रश्न

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


Derivative of (tanx)4 is ______ 


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×