हिंदी

Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 

योग

उत्तर

Let y = (1 + sin2x)2 (1 + cos2x)3 

Differentiating w.r.t. x, we get

`"dy"/"dx"="d"/"dx"[(1+ sin^2x)^2(1 + cos^2x)^3]`

`= (1 + sin^2x)^2."d"/"dx"(1+ cos^2x)^3+(1+cos^2x)^3."d"/"dx"(1+sin^2x)^2`

`= (1 + sin^2x)^2 xx 3(1 + cos^2x)^2."d"/"dx"(1 + cos^2x) + (1 + cos^2x)^3 xx 2(1 + sin^2x)."d"/"dx"(1 + sin^2x)`

`=3(1+sin^2x)^2(1+ cos^2x)^2.[0 + 2cosx. "d"/"dx"(cosx)] + 2(1 + sin^2x)(1 + cos^2x)^3.[0 + 2sinx."d"/"dx"(sinx)]`

= 3(1 + sin2x)2(1 + cos2x)2.[2cosx( – sinx)] + 2(1 + sin2x)(1 + cos2x)3[2sinx .cosx]
= 3(1 + sin2x)2(1 + cos2x)2(– sin2x) + 2(1 + sin2x)(1 + cos2x)3(sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2 [– 3(1 + sin2x) + 2(1 + cos2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(– 3 – 3sin2x + 2 + 2cos2x)
= sin2x(1 + sin2x)(1 + cos2x)2[– 1 – 3sin2x + 2(1 – sin2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(–1 – 3sin2x + 2 – 2sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2(1 – 5sin2x).

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.1 | Q 3.05 | पृष्ठ १२

संबंधित प्रश्न

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×