Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
उत्तर
Let y = (1 + sin2x)2 (1 + cos2x)3
Differentiating w.r.t. x, we get
`"dy"/"dx"="d"/"dx"[(1+ sin^2x)^2(1 + cos^2x)^3]`
`= (1 + sin^2x)^2."d"/"dx"(1+ cos^2x)^3+(1+cos^2x)^3."d"/"dx"(1+sin^2x)^2`
`= (1 + sin^2x)^2 xx 3(1 + cos^2x)^2."d"/"dx"(1 + cos^2x) + (1 + cos^2x)^3 xx 2(1 + sin^2x)."d"/"dx"(1 + sin^2x)`
`=3(1+sin^2x)^2(1+ cos^2x)^2.[0 + 2cosx. "d"/"dx"(cosx)] + 2(1 + sin^2x)(1 + cos^2x)^3.[0 + 2sinx."d"/"dx"(sinx)]`
= 3(1 + sin2x)2(1 + cos2x)2.[2cosx( – sinx)] + 2(1 + sin2x)(1 + cos2x)3[2sinx .cosx]
= 3(1 + sin2x)2(1 + cos2x)2(– sin2x) + 2(1 + sin2x)(1 + cos2x)3(sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2 [– 3(1 + sin2x) + 2(1 + cos2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(– 3 – 3sin2x + 2 + 2cos2x)
= sin2x(1 + sin2x)(1 + cos2x)2[– 1 – 3sin2x + 2(1 – sin2x)]
= sin2x(1 + sin2x)(1 + cos2x)2(–1 – 3sin2x + 2 – 2sin2x)
= sin2x(1 + sin2x)(1 + cos2x)2(1 – 5sin2x).
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate sin2 (sin−1(x2)) w.r. to x
Derivative of (tanx)4 is ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.