मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t.x: 83(2x2-7x-5)113 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`

बेरीज

उत्तर

`f(x) = (8)/(3root(3)((2x^2 - 7x - 5)^11`

We rewrite the denominator using exponent notation:

`f(x) = (8)/3(2x^2 - 7x - 5)^(11/3)`

`f(x) = 8/g(x)`

`g(x) = 3(2x^2 - 7x - 5)^(11/3)`

`d/dx(c/g(x)) = -(cxxg' (x))/(g(x))^2`

We use the chain rule to differentiate:

`g(x) = 3(2x^2 - 7x - 5)^(11/3)`

`g'(x) = 3xx11/3(2x^2 - 7x - 5)^(11/3-1)xxd/dx (2x^2-7x - 5)`

`g'(x) = 11(2x^2 - 7x-5)^(8/3)xx(4x-7)`

`f'(x) = - (8xx11(2x^2 - 7x - 5)^(8/3) xx (4x-7))/(3(2x^2 - 7x - 5)^(11/3))^2`

`f'(x) = - (88(4x-7)(2x^2-7x-5)^(8/3))/(9(2x^2 - 7x + 5)^(22/3))`

`f'(x) = -(39.11x - 68.44)/(-2x^2 + 7x + 5)^(11/3)`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.1 [पृष्ठ ११]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×