मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y = sin−1 (2x), find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = sin−1 (2x), find `("d"y)/(""d"x)` 

बेरीज

उत्तर

y = sin−1 (2x

∴ `("d"y)/("d"x) = "d"/("d"x)[sin^-1 (2^x)]`

= `1/sqrt(1 - (2^x)^2) * "d"/("d"x)(2^x)`

= `(2^x log2)/sqrt(1 - (2^x)^2`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.1: Differentiation - Very Short Answers

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×