Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
उत्तर
Let y = `tan^-1((2x)/(1 - x^2))`
Put x = tanθ.
Then θ = tan–1x
∴ y = `tan^-1((2tanθ)/(1 - tan^2θ))`
= tan–1(tan2θ)
= 2θ
= 2tan–1x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2tan^-1x)`
= `2"d"/"dx"(tan^-1x)`
= `2 xx (1)/(1 + x^2)`
= `(2)/(1 + x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If y = log (sec x + tan x), find `dy/dx`.