मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t.x: tan–1 (cosec x + cot x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)

बेरीज

उत्तर

Let y = tan–1 (cosec x + cot x)

= `tan^-1(1/sinx + cosx/sinx)`

= `tan^-1((1 + cosx)/(sinx))`

= `tan^-1[(2cos^2(x/2))/(2sin(x/2)*cos(x/2))]`

= `tan^-1[cot(x/2)]`

= `tan^-1[tan(π/2 - x/2)]`

= `π/2 - x/2`

Differentiating w.r.t.x, we get

`dy/dx = d/dx(π/2 - π/2)`

= `d/dx(π/2) - 1/2 d/dx(x)`

= `0 - 1/2 xx 1`

= `-1/2`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.2 [पृष्ठ ३०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×