Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
उत्तर
Let y = `x^(x^x) + e^(x^x)`
Put u = `x^(x^x) and v = e^(x^(x)`
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ...(1)
Take u = `x^(x^(x)`
∴ log u = `logx^(x^(x)) = x^x*logx`
Differentiating both sides w.r.t. x, we get
`1/u*"du"/"dx" = "d"/"dx"(x^x*logx)`
= `x^x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x^x)`
= `x^x xx 1/x + (logx)*"d"/"dx"(x^x)` ...(2)
To find `"d"/"dx"(x^x)`
Let ω = xx
Then log ω = xlogx
Differentiating both sides w.r.t. x, we get
`1/omega*"dω"/"dx" = "d"/"dx"(xlogx)`
= `x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x)`
= `x xx (1)/x + (logx) xx 1`
∴ `"dω"/"dx" = omega(1 + logx)`
∴ `"d"/"dx"(x^x) = x^x(1 + logx)` ...(3)
∴ from (2),
`1/u*"du"/"dx" = x^x xx (1)/x + (logx)*x^x(1 + logx)`
∴ `"du"/"dx" = y[x^x xx 1/x + (logx)*x^x(1 + logx)]`
= `x^(x^x)*x^x[1/x + (logx)*(1 + logx)]`
= `x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)]` ...(4)
Also, v = `e^(x^(x)`
∴ `"dv"/"dx" = "d"/"dx"(e^(x^x))`
= `e^(x^(x))*"d"/"dx"(e^(x^x))`
= `e^(x^(x))*x^x(1 + logx)` ...(5) [By (3)]
From (1), (4) and (5), we get
`"dy"/"dx" = x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)] + e^(x^x)*x^x(1 + logx)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
Derivative of (tanx)4 is ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`