मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x: xxx+exx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`

बेरीज

उत्तर

Let y = `x^(x^x) + e^(x^x)`

Put u = `x^(x^x) and v = e^(x^(x)`

Then y = u + v

∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`     ...(1)

Take u = `x^(x^(x)`

∴ log u = `logx^(x^(x)) = x^x*logx`

Differentiating both sides w.r.t. x, we get

`1/u*"du"/"dx" = "d"/"dx"(x^x*logx)`

= `x^x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x^x)`

= `x^x xx 1/x + (logx)*"d"/"dx"(x^x)`      ...(2)

To find `"d"/"dx"(x^x)`

Let ω = xx

Then log ω = xlogx

Differentiating both sides w.r.t. x, we get

`1/omega*"dω"/"dx" = "d"/"dx"(xlogx)`

= `x*"d"/"dx"(logx) + (logx)*"d"/"dx"(x)`

= `x xx (1)/x + (logx) xx 1`

∴ `"dω"/"dx" = omega(1 + logx)`

∴ `"d"/"dx"(x^x) = x^x(1 + logx)`      ...(3)

∴ from (2),

`1/u*"du"/"dx" = x^x xx (1)/x + (logx)*x^x(1 + logx)`

∴ `"du"/"dx" = y[x^x xx 1/x + (logx)*x^x(1 + logx)]`

= `x^(x^x)*x^x[1/x + (logx)*(1 + logx)]`

= `x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)]`      ...(4)

Also, v = `e^(x^(x)`

∴ `"dv"/"dx" = "d"/"dx"(e^(x^x))`

= `e^(x^(x))*"d"/"dx"(e^(x^x))`

= `e^(x^(x))*x^x(1 + logx)`      ...(5) [By (3)] 

From (1), (4) and (5), we get              

`"dy"/"dx" = x^(x^x)*x^x*logx[1 + logx + 1/(xlogx)] + e^(x^x)*x^x(1 + logx)`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


Derivative of (tanx)4 is ______ 


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×