Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
उत्तर
Let y = `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
= `log4^(2x) + log((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)`
= `2xlog4 + (3)/(2)log((x^2 + 5)/(sqrt(2x^3 - 4)))`
= `2xlog4 + (3)/(2)[log(x^2 + 5) - log sqrt((2x^3 - 4))^(1/2)]`
= `2xlog4 + (3)/(2)[log(x^2 + 5) - log sqrt(2x^3 - 4)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[2xlog4 + 3/2log(x^2 + 5) - 3/4log(2x^3 - 4)]`
= `(2log4)"d"/"dx"(x)+ (3)/(2)"d"/"dx"[log(x^2 + 5)] - (3)/(4)"d"/"dx"[log(2x^3 - 4)]`
= `(2log4) xx 1 + 3/2 xx (1)/(x^2 + 5)."d"/"dx"(x^2 + 5) - 3/4 xx (1)/(2x^3 - 4)."d"/"dx"(2x^3 - 4)`
= `2log4 + (3)/(2(x^2 + 5)) xx (2x + 0) - (3)/(4(2x^3 - 4)) xx (2 xx 3x^2 - 0)`
= `2log4 + (3x)/(x^2 + 5) - (9x^2)/(2(2x^3 - 4)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate y = etanx w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If y = log (sec x + tan x), find `dy/dx`.