Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
उत्तर
Let y = (sin x)tanx + (cos x)cotx
Put u = (sin x)tanx and v = (cos x)cotx
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ...(1)
Take u = (sin x)tanx
∴ log u = log(sin x)tanx = (tan x).(log sinx)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x)(log sin x)]`
= `(tan x)."d"/"dx"(log sin x) + (log sinx)."d"/"dx"(tanx)`
= `(tanx)/(sin x)."d"/"dx"(sin x) + (log sinx)(sec^2x)`
= `((sinx)/(cosx))/(sinx).cosx + (sec^2x)(log sinx)`
= 1 + (sec2x)(log sinx)
∴ `"du"/"dx" = y[1 + (sec^2x)(log sinx)]`
= (sin x)tanx[1 + (sec2x)(log sinx)] ...(2)
Also, v = (cos x)cotx
∴ log v = log(cos x)cotx = (cot x).(log cosx)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"[(cot x).(log cos x)]`
= `(cot x)."d"/"dx"(log cos x) + (log cos x)."d"/"dx"(cotx)`
= `cot x xx 1/cosx."d"/"dx"(cosx) + (log cosx).(-"cosec"^2x)`
= `cotx xx 1/cosx xx (-sin x) - ("cosec"^2x)(log cosx)`
∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(log cosx)]`
= –(cos x)cotx [1 + (cosec2x)(log cosx)] ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" = (sin x)^(tanx)[1 + (sec^2x)(log sin x)] - (cos x)^(cotx)[1 + ("cosec"^2x)(log cosx)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (sin xx)
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
Derivative of (tanx)4 is ______
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.