English

Differentiate the following w.r.t. x : (sin x)tanx + (cos x)cotx - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 

Sum

Solution

Let y = (sin x)tanx + (cos x)cotx 
Put u = (sin x)tanx and v = (cos x)cotx
Then y = u + v
∴ `"dy"/"dx" = "du"/"dx" + "dv"/"dx"`       ...(1)
Take u = (sin x)tanx 
∴ log u = log(sin x)tanx = (tan x).(log sinx)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x)(log sin x)]`

= `(tan x)."d"/"dx"(log sin x) + (log sinx)."d"/"dx"(tanx)`

= `(tanx)/(sin x)."d"/"dx"(sin x) + (log sinx)(sec^2x)`

= `((sinx)/(cosx))/(sinx).cosx + (sec^2x)(log sinx)`
= 1 + (sec2x)(log sinx)
∴ `"du"/"dx" = y[1 + (sec^2x)(log sinx)]`

= (sin x)tanx[1 + (sec2x)(log sinx)]     ...(2)
Also, v = (cos x)cotx 
∴ log v = log(cos x)cotx = (cot x).(log cosx)
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"[(cot x).(log cos x)]`

= `(cot x)."d"/"dx"(log cos x) + (log cos x)."d"/"dx"(cotx)`

= `cot x xx 1/cosx."d"/"dx"(cosx) + (log cosx).(-"cosec"^2x)`

= `cotx xx 1/cosx xx (-sin x) - ("cosec"^2x)(log cosx)`

∴ `"dv"/"dx" = v[1/tanx xx (-tanx) - ("cosec"^2x)(log cosx)]`
= –(cos x)cotx [1 + (cosec2x)(log cosx)]    ...(3)
From (1), (2) and (3), we get
`"dy"/"dx" = (sin x)^(tanx)[1 + (sec^2x)(log sin x)] - (cos x)^(cotx)[1 + ("cosec"^2x)(log cosx)]`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


Derivative of (tanx)4 is ______ 


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×