English

Differentiate the following w.r.t. x : cos-1[3cos(ex)+2sin(ex)13] - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`

Sum

Solution

y = `cos^-1((3cos(e^x) + 2sin(e^x))/sqrt(13))`

y  = `cos^-1(cos(e^x).(3)/sqrt(13) + sin(e^x)2/sqrt(13))`

Put, `(3)/sqrt(13) = cos α, (2)/sqrt(13) = sin α`

Also,

sin2α + cos2α = `(9)/(13) + (4)/(13)` = 1

And,

tan α = `(2)/(3)       ∴ α = "tan"^-1(2/3)`

y = cos–1(cos ex. cos α + sin ex. sin α)

y = cos–1[cos(ex – α)]       ...[∵ cos–1x.(cos x) = x]

y = ex – α

y = `e^x  –  tan^-1(2/3)`

Differentiating w.r.t. x, we get

`dy/dx = d/dx [e^x - tan^-1(2/3)]`

`dy/dx` = ex – 0

`dy/dx` = ex

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 30]

RELATED QUESTIONS

Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×