English

Differentiate the following w.r.t. x : cot-1[cot(ex2)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`

Sum

Solution

Let y = `cot^-1[cot(e^(x^2))] = e^(x^2)` 

Differentiating w.r.t. x, we get

`"dy"/"dx" = "d"/"dx"(e^(x^2))`

= `e^(x^2).("d"(x^2))/"dx"`

= `e^(x^2). 2x`

= `2x.e^(x^2)`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 29]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×