Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Solution
Let y = `cot^-1((4 - x - 2x^2)/(3x + 2))`
= `tan^-1((3x + 2)/(4 - x - 2x^2)) ...[∵ cot^-1 x = tan^-1(1/x)]`
= `tan^-1[(3x + 2)/(1 - (2x^2 + x - 3))]`
= `tan^-1 [((2x + 3) + (x - 1))/(1 - (2x + 3)(x - 1))]`
= tan–1(2x + 3) + tan–1(x – 1)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[tan^-1(2x + 3) + tan^-1(x - 1)]`
= `"d"/"dx"[tan^-1(2x + 3)] + "d"/"dx"[tan^-1(x - 1)]`
= `(1)/(1 + (2x + 3)^2)."d"/"dx"(2x + 3) + (1)/(1 + (x - 1)^2)."d"/"dx"(x - 1)`
= `(1)/(1 + (2x + 3)^2).(2 xx 1 + 0) + (1)/(1 + (x - 1)^2).(1 - 0)`
= `(2)/(1 + (2x + 3)^2) + (1)/(1 + (x - 1)^2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate y = etanx w.r. to x
If f(x) is odd and differentiable, then f′(x) is
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
If y = cosec x0, then `"dy"/"dx"` = ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`