English

Differentiate the following w.r.t. x : (x+ 1)2(x+2)3(x+3)4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`

Sum

Solution

Let y = `(x + 1)^2/((x + 2)^3(x + 3)^4`

Then, log y = `log[(x + 1)^2/((x + 2)^3(x + 3)^4)]`

= log(x + 1)2 – log(x + 2)3 – log(x + 3)4

= 2log(x + 1) – 3log(x + 2) – 4log(x + 3)

Differentiating w.r.t. x, we get

`(1)/y "dy"/"dx" = 2"d"/"dx"[log(x + 1)] -3"d"/"dx"[log(x + 2)] - 4"d"/"dx"[log(x + 3)]`

= `2 xx (1)/(x + 1)."d"/"dx"(x + 1) -3 xx (1)/(x + 2)."d"/"dx"(x + 2) - 4 xx (1)/(x + 3)."d"/"dx"(x + 3)`

= `(2)/(x + 1).(1 + 0) - (3)/(x + 2).(1 + 0) - (4)/(x + 3).(1 + 0)`

∴ `"dy"/"dx" = y[2/(x + 1) - 3/(x + 2) - 4/(x + 3)]`

= `(x + 1)^2/((x + 2)^3(x + 3)^4).[2/(x + 1) - 3/(x + 2) - 4/(x + 3)]`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 39]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If f(x) is odd and differentiable, then f′(x) is


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×