Advertisements
Advertisements
Question
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Solution
Let y = `sin^-1(sqrt((1 + x^2)/2))`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[sin^-1(sqrt((1 + x^2)/2))]`
= `(1)/(sqrt(1 - (sqrt((1 + x^2)/2)))^2)."d"/"dx"(sqrt((1 + x^2)/2))`
= `(1)/(sqrt((1 - (1 + x^2)/2))^2) . 1/(2sqrt((1 + x^2)/2)) . 1/2 . 2x`
= `(1)/(((sqrt(2 - 1 + x^2))/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/((sqrt(1 - x^2)/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/(((1 - x^2)/2)) . 1/(2((sqrt(1 + x^2))/sqrt2)) . 1/2 . 2x`
= `2/((1 - x^2)) . sqrt2/(2sqrt(1 + x^2)) . 1/2 . 2x`
= `(2 . sqrt2 . 2x)/((1 - x^2) . 2 . 2 . sqrt(1 + x^2))`
= `(sqrt2 . x)/((1 - x)^2 (sqrt(1 + x^2))`
= `x/sqrt((1 - x^2)(1 + x^2)`
= `x/sqrt(1 - x^4)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If f(x) is odd and differentiable, then f′(x) is
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.