English

Differentiate the following w.r.t. x : cos-1(1-cos(x2)2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`

Sum

Solution

Let y = `cos^-1(sqrt(1 - cos(x^2))/2)`

= `cos^-1(sqrt((2sin^2(x^2/2))/2))`

= `cos^-1[sin(x^2/2)]`

= `cos^-1[cos(pi/2 - x^2/2)]`

= `pi/(2) - x^2/(2)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(pi/2 - x^2/2)`

= `"d"/"dx"(pi/2) - (1)/(2)"d"/"dx"(x^2)`

= `0 - (1)/(2) xx 2x`
= – x.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 29]

RELATED QUESTIONS

Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×