English

Differentiate the following w.r.t. x : sin-1 (1-25x21+25x2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`

Sum

Solution

Let y = `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`

= `sin^-1[(1 - (5x)^2)/(1 + (5x)^2)]`
Put 5x = tanθ.
Then θ = tan–1(5x)

∴ y = `sin^-1((1 - tan^2θ)/(1 + tan^2θ))`
= sin–1(cos2θ)

= `sin^-1[sin(pi/2 - 2θ)]`

= `pi/(2) - 2θ`

= `pi/(2) - 2tan^-1(5x)`
Differentiating w.r.t. x, we get
∴ `"dy"/"dx" = "d"/"dx"[pi/2 - 2tan^-1 (5x)]`

= `"d"/"dx"(pi/2) - 2"d"/"dx"[tan^-1(5x)]`

= `0 - 2 xx (1)/(1 + (5)^2)."d"/"dx"(5x)`

= `(-2)/(1 + 25x^2) xx 5`

= `(-10)/(1 + 25x^2)`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 30]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×