Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Solution
Let y = `sin^-1(2xsqrt(1 - x^2))`
Put x = sinθ.
Then θ = sin–1x
∴ y = `sin^-1(2sinθsqrt(1 - sin^2θ))`
= sin–1(2sinθ cosθ)
= sin–1(sin2θ)
= 2θ
= 2sin–1x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2sin^-1x)`
= `2"d"/"dx"(sin^-1x)`
= `2 xx 1/sqrt(1 - x^2)`
= `2/sqrt(1 - x^2)`
We can also put x = cosθ.
Then θ = cos–1x
∴ y = `sin^-1(2cosθsqrt(1 - cos^2θ))`
= sin–1(2cosθ sinθ)
= sin–1(sin2θ)
= 2θ
= 2cos–1x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2cos^-1 x)`
= `2"d"/"dx"(cos^-1 x)`
= `2 xx (-1)/sqrt(1 - x^2)`
= `(-2)/sqrt(1 - x^2)`
Hence, `"dy"/"dx" = ± (2)/sqrt(1 - x^2)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin x)x
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.