Advertisements
Advertisements
Question
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Solution
Let y = log[tan3x.sin4x.(x2 + 7)7]
= log tan3x + log sin4x + log(x2 + 7)7
= 3log tanx + 4log sinx + 7log(x2 + 7)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[3log tanx + 4 logsinx + 7 log(x^2 + 7)]`
= `3"d"/"dx"(log tan x) + 4"d"/"dx"(log sinx) + 7"d"/"dx"[log(x^2 + 7)]`
= `3 xx (1)/tanx ."d"/"dx"(tanx) + 4 xx (1)/sinx."d"/"dx"(sinx) + 7 xx (1)/(x^2 + 7)."d"/"dx"(x^2 + 7)`
= `3 xx (1)/tanx.sec^2x + 4 xx (1)/sinx.cosx + 7 xx (1)/(x^2 + 7).(2x + 0)`
= `3 xx "cosx"/"sinx" xx (1)/(cos^2x) + 4cotx + (14x)/(x^2 + 7)`
= `(6)/(2sinx cosx) + 4cot + (14x)/(x^2 + 7)`
= `(6)/(sin2x) + 4cotx + (14x)/(x^2 + 7)`
= `6"cosec"2x + 4cotx + (14x)/(x^2 + 7)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`