Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : cot–1(x3)
Solution
Let y = cot–1(x3)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[cot^-1(x^3)]`
= `(-1)/(1 + (x^3)^2)."d"/"dx"(x^3)`
= `(-1)/(1 + x^6) xx 3x^2`
= `(-3x^2)/(1 + x^6)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.