English

Differentiate cot-1(cosx1+sinx) w.r. to x - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x

Sum

Solution

Let y = `cot^-1((cos x)/(1 + sinx))`

= `tan^-1((1 + sinx)/(cos x))`

= `tan^-1[(cos^2(x/2) + sin^2(x/2) + 2sin(x/2)cos(x/2))/(cos^2(x/2) - sin^2(x/2))]`

= `tan^-1[{cos(x/2) + sin(x/2)}^2/([cos(x/2) + sin(x/2)][cos(x/2) - sin(x/2)])]`

= `tan^-1[(cos(x/2) + sin(x/2))/(cos(x/2) - sin(x/2))]`

= `tan^-1[(1 + tan(x/2))/(1 - tan(x/2))]`

= `tan^-1[(tan(pi/4) + tan(pi/2))/(1 - tan(pi/4)tan(x/2))]`

= `tan^-1[tan(pi/4 + x/2)]`

∴ y = `pi/4 + x/2`

Differentiating w. r. t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(pi/4 + x/2) = 0 + 1/2 = 1/2`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Short Answers II

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x:

`log[a^(cosx)/((x^2 - 3)^3 logx)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Differentiate y = etanx w.r. to x


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate sin2 (sin−1(x2)) w.r. to x


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×