English

Differentiate the following w.r.t.x: (x3 – 2x – 1)5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5

Sum

Solution 1

Let y  = (x3 – 2x – 1)5

Differentiating w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"` (x3 – 2x – 1)5

= 5(x3 – 2x – 1)4 × `"d"/"dx"` (x3 – 2x – 1)

= 5(x3 – 2x – 1)4 × (3x2 – 2 × 1 – 0)

= 5(3x2 – 2)(x3 – 2x – 1)4.

shaalaa.com

Solution 2

Let y = (x3 – 2x – 1)5

Put u = x3 – 2x – 1.

Then y = u5

∴ `"dy"/"du" = "d"/"du"` (u5) = 5u4

= 5(x3 – 2x – 1)4

and

`"du"/"dx" = "d"/"dx"`(x3 – 2x – 1)

= 3x2 – 2 × 1 – 0

= 3x2 – 2

∴ `"dy"/"dx" = "dy"/"du" xx "du"/"dx"`

= 5(x3 – 2x – 1)4 (3x2 – 2)

= 5(3x2 – 2)(x3 – 2x – 1)4.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 11]

RELATED QUESTIONS

Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If f(x) is odd and differentiable, then f′(x) is


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×