Advertisements
Advertisements
Question
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Solution
Let y = `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
= `log4^(2x) + log((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)`
= `2xlog4 + (3)/(2)log((x^2 + 5)/(sqrt(2x^3 - 4)))`
= `2xlog4 + (3)/(2)[log(x^2 + 5) - log sqrt((2x^3 - 4))^(1/2)]`
= `2xlog4 + (3)/(2)[log(x^2 + 5) - log sqrt(2x^3 - 4)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[2xlog4 + 3/2log(x^2 + 5) - 3/4log(2x^3 - 4)]`
= `(2log4)"d"/"dx"(x)+ (3)/(2)"d"/"dx"[log(x^2 + 5)] - (3)/(4)"d"/"dx"[log(2x^3 - 4)]`
= `(2log4) xx 1 + 3/2 xx (1)/(x^2 + 5)."d"/"dx"(x^2 + 5) - 3/4 xx (1)/(2x^3 - 4)."d"/"dx"(2x^3 - 4)`
= `2log4 + (3)/(2(x^2 + 5)) xx (2x + 0) - (3)/(4(2x^3 - 4)) xx (2 xx 3x^2 - 0)`
= `2log4 + (3x)/(x^2 + 5) - (9x^2)/(2(2x^3 - 4)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If f(x) is odd and differentiable, then f′(x) is
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
Derivative of (tanx)4 is ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`