English

Differentiate the following w.r.t. x : tan-1(2x1+3x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`

Sum

Solution

Let y = `tan^-1((2sqrt(x))/(1 + 3x))`

=  `tan^-1[(3sqrt(x) - sqrt(x))/(1 + (3sqrt(x))(sqrt(x))}]`

=  `tan^-1(3sqrt(x)) - tan^-1(sqrt(x))`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[tan^-1(sqrt(x)) - tan^-1(sqrt(x))]]`

= `"d"/"dx"[tan^-(3sqrt(x)] - "d"/"dx"[tan^-1(sqrt(x))]`

= `(1)/(1 + (3sqrt(x))^2)."d"/"dx"(3sqrt(x)) - (1)/(1 + (sqrt(x))^2)."d"/"dx"(sqrt(x))`

= `(1)/(1 + 9x) xx 3 xx (1)/(2sqrt(x)) - (1)/(1 + x) xx (1)/(2sqrt(x)`

= `(1)/(2sqrt(x))[3/(1 + 9x) - 1/(1 + x)]`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 30]

RELATED QUESTIONS

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×