English

Differentiate the following w.r.t.x: e(3x+2)+ 5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`

Sum

Solution

Let y = `sqrt(e^((3x + 2) +  5)`
Differentiating w.r.t. x,we get,
`"dy"/"dx" = "d"/"dx"[e^((3x + 2)) + 5]^(1/2)`

= `1/2[e^((3x + 2)) + 5]^(-1/2)."d"/"dx"[e^((3x + 2)) + 5]`

= `1/(2sqrt(e^((3x + 2)) + 5)).[e^((3x + 2)). "d"/"dx"(3x + 2)  +  0]`

= `1/(2sqrt(e^((3x + 2)) + 5)).[e^((3x + 2)). (3 xx 1 + 0)]`

= `(3e^((3x + 2)))/(2sqrt(e^((3x + 2))+ 5)`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


Differentiate y = etanx w.r. to x


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Derivative of (tanx)4 is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×