English

Differentiate the following w.r.t. x : 10xx+xx(10)+x10x - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`

Sum

Solution

Let y = `10^(x^(x)) + x^(x(10)) + x^(10x)`
Put u = `10^(x^(x)), v = x^(x^(10)) and omega = x^(10^(x)`
Then y = u + v + ω
∴ `"dy"/"dx" = "u"/"dx" + "dv"/"dx" + "dω"/"dx"`                   ...(1)
Take, u = `10^(x^(x)`
∴ `"du"/"dx" = "d"/"dx"(10^(x^(x)`

= `10^(x^(x)).log10."d"/"dx"(x^x)`

To find `"d"/"dx"(x^x)`
Let z = xx
∴ logz = logxx = xlogx
Differentiating both sides w.r.t. x, we get
`1/z."dz"/"dx" = "d"/"dx"(xlogx)`

= `x."d"/"dx"(logx) + (logx)."d"/"dx"(x)`

= `x xx 1/x + (logx)(1)`

∴ `"dz"/"dx" = z(1 + logx)`

∴ `"d"/"dx"(x^x) = x^x(1 + logx)`

∴ `"du"/"dx" = 10^(x^x).log10.x^x(1 + logx)`  ...(2)
Take, v = `x^(x^10)`
∴ log v = `logx^(x^10) = x^10.logx`
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"(x^10logx)`

= `x^10."d"/"dx"(logx) + (logx)."d"/"dx"(x^10)`

= `x^10 xx 1/x + (logx)(10x^9)`

∴ `"dv"/"dx" = v[x^9 + 10x^9logx]`

∴ `"dv"/"dx" = x^(x^10).x^9(1 + 10logx)`       ...(3)
Also, ω = `x^(10x)`
∴ log ω = `logx^(10x) = 10^x.logx`
Differentiating both sides w.r.t. x, we get
`1/omega ."dω"/"dx" = "d"/"dx"(10^x.logx)`

= `10^x."d"/"dx"(logx) + (logx)."d"/"dx"(10^x)`

= `10^x xx 1/x + (logx)(10^x.log10)`

∴ `"dω"/"dx" = ω[10^x/x + 10^x.(logx)(log10)]`

∴ `"dω"/"dx" = x^(10x).10^x[1/x + (logx)(log10)]` ...(4)
From (1),(2),(3) and (4), we get
`"dy"/"dx" = 10^(x*x).log10.x^x(1 + logx) + x^(x^10).x^9(1 + 10logx) + x^(10x).10^x[1/x + (logx)(log10)]`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


If f(x) is odd and differentiable, then f′(x) is


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×