English

Differentiate the following w.r.t.x: ex+1ex-1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`

Sum

Solution

Let y = `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiating w.r.t. x, we get

`"dy"/"dx" = "d"/"dx"((e^sqrt(x) + 1)/(e^sqrt(x) - 1))`

= `((e^sqrt(x) - 1)"d"/"dx"(e^sqrt(x) + 1) - (e^sqrt(x) + 1)"d"/"dx"(e^sqrt(x) - 1))/(e^sqrt(x) - 1)^2`

= `((e^sqrt(x) - 1)[e^sqrt(x)."d"/"dx"(sqrt(x)) + 0] - (e^sqrt(x) + 1)[e^sqrt(x)."d"/"dx"(sqrt(x)) - 0])/(e^sqrt(x) - 1)^2`

= `((e^sqrt(x) - 1)[e^sqrt(x) xx 1/(2sqrt(x))] - (e^sqrt(x) + 1)[e^sqrt(x) xx 1/(2sqrt(x))])/(e^sqrt(x) - 1)^2`

= `((e^sqrt(x))/(2sqrt(x))(e^sqrt(x) - 1 - e^sqrt(x) - 1))/(e^sqrt(x) - 1)^2`

= `(-e^sqrt(x))/(sqrt(x)(e^sqrt(x) - 1)^2`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


y = {x(x - 3)}2 increases for all values of x lying in the interval.


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×