Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Solution
Let y = `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
= `tan^-1((1 + sqrt(x))/(1 - sqrt(x))) ...[∵ cot^-1 x = tan^-1(1/x)]`
= `tan^-1((1 + sqrt(x))/(1 - 1 xx sqrt(x)))`
= `tan^-1(1) + tan^-1(sqrt(x)) ...[∵ tan^-1((x + y)/(1 - xy)) = tan^-1x + tan^-1y]`
= `pi/(4) + tan^-1(sqrt(x))`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[pi/4 + tan^-1(sqrt(x))]`
= `"d"/"dx"(pi/4) + "d"/"dx"[tan^-1(sqrt(x))]`
= `0 + (1)/(1 + (sqrt(x))^2)."d"/"dx"(sqrt(x))`
= `(1)/(1 + x) xx (1)/(2sqrt(x)`
= `(1)/(2sqrt(x)(1 + x)`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = etanx w.r. to x
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = cosec x0, then `"dy"/"dx"` = ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.