Advertisements
Advertisements
Question
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Solution
(A) `"d"/"dx"[f(g(x))]`
= `f'(g(x))."d"/"dx"(g(x))`
= f'(g(x)) xg'(x)
∴ `"d"/"dx"[f(g(x))]` at x = – 1
= f'(g(– 1)) x g'(– 1)
= f'(2) x g'(– 1) ...[∵ g(x) = 2, when x = – 1]
= – 5 x 4
= – 20
(B) `"d"/"dx"[g(f(x) - 1)]`
= `g'(f(x) - 1)."d"/"dx"[f(x) - 1]`
= g'(f(x) – 1) x [f'(x) – 0]
∴ `"d"/"dx"[gf(x) - 1]` at x = – 1
= g'(f(– 1)– 1) xx f'( –1)
= g'(3 – 1) x f'(– 1) ...[∵ f(x) 33, when x = – 1]
= g'(2) x f'(– 1)
= (– 4)(– 3)
= 12
(C) `"d"/"dx"[f(f(x) - 3)]`
= `f'(f(x) - 3)."d"/"dx"[f(x) - 3]`
= f'(f(x) – 3) x [f'(x) – 0]
∴ `"d"/"dx"[f(f(x) - 3)]` at = 2
= f"(f(2) – 3) x f'(2)
= f'(2 – 3) x f'(2) ...[∵ f(x) = 2, when x = 2]
= f'(– 1) x f'(2)
= (– 3)(– 5)
= 15
(D) `"d"/"dx"[g(g(x))]`
= `g'(g(x))."d"/"dx"[g(x)]`
= g'(g(x)) x g'(x)
∴ `"d"/"dx"[g(g(x))]`at x = 2
= g'(g(2)) x g'(2)
= g'(– 1) c g'(2) ...[∵ g(x) = – 1at x = 2]
= 4(– 4)
= – 16
Hence, (A) →3, (B) → 5, (C) → 4, (D) → 1.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
Derivative of (tanx)4 is ______
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`