English

Differentiate the following w.r.t.x: y = (25)log5(secx) − (16)log4(tanx) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 

Sum

Solution

y = (25)log5(secx) − (16)log4(tanx) 

y = (52)log5(secx) − (42)log4(tanx) 

y = (5)2log5(secx) − (4)2log4(tanx) 

`y = (5)^(log_5 (sec^2x)) - (4)^(log_4(tan^2x))`

y =  sec2x – tan2x                      ...`[ ∵ a^(log_ax) = x]`

∴ y = 1
Differentiating w.r.t.x, we get,

`"dy"/"dx" = "d"/"dx"(1)`

`"dy"/"dx"` = 0.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


y = {x(x - 3)}2 increases for all values of x lying in the interval.


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×