English

Differentiate the following w.r.t.x: 5sin3x+3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x: `5^(sin^3x + 3)`

Sum

Solution

Let y = `5^(sin^3x + 3)`
Differentiating w.r.t. x,we get,
`"dy"/"dx" = "d"/"dx"(5^(sin^3x + 3))`

= `5^(sin^3x + 3).log5."d"/"dx"(sin^3x + 3)`

= `5^(sin^3x + 3).log5.[3sin^2x."d"/"dx"(sin x) + 0]`

= `5^(sin^3x + 3).log5.[3sin^2x cosx]`

= `3sin^2x cosx. 5^(sin^3x + 3).log5`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


Derivative of (tanx)4 is ______ 


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If y = cosec x0, then `"dy"/"dx"` = ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×