Advertisements
Advertisements
Question
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Solution
Let y = etanx + (logx)tanx
Put u = (logx)tanx
∴ log u = log (log x)tanx = (tan x).(log log x)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x).(log logx)]`
= `(tanx)."d"/"dx"(log log x) + (log log x)."d"/"dx"(tan x)`
= `tanx xx 1/logx."d"/"dx"(logx) + (log log x)(sec^2x)`
= `tanx xx 1/logx xx 1/x + (log log x)(sec^2x)`
∴ `"du"/"dx" = u[tanx/(xlogx) + (loglogx)(sec^2x)]`
= `(logx)^(tanx)[tanx(xlogx) + (log log x)(sec^2x)]`
Now, y = etanx + u
∴ `"dy"/"dx" = "d"/"dx"(e^tanx) + "du"/"dx"`
= `e^(tanx)."d"/"dx"(tanx) + "du"/"dx"`
= `e^(tanx).sec^2x + (logx)^(tanx)[tanx/(xlogx) + (log log x)(sec^2x)]`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.