Advertisements
Advertisements
Question
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Solution
Let y = `(1 + sinx°)/(1 − sinx°)`
y = `(1 + sin((πx)/180))/(1 − sin((πx)/180)) ...[∵ x° = ((pix)/180)^°]`
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [(1 + sin((πx)/180))/(1 − sin((πx)/180))]`
`dy/dx = ([1 − sin((πx)/180)]. d/dx [1 + sin((πx)/180)] − [1 + sin((πx)/180)]. d/dx [1 − sin((πx)/180)])/[1 − sin((πx)/180)]^2`
`dy/dx = ([1 − sin((πx)/(180))].[0 + cos((πx)/(180)). d/dx ((πx)/(180)) - [1 + sin((πx)/(180))].[0 − cos((πx)/(180)). d/dx ((πx)/(180))]))/[1 − sin((πx)/180)]^2`
`dy/dx = ((1 − sinx°)[(cosx°) × π/(180) × 1] - (1 + sinx°)[(− cosx°) × π/(180) × 1])/(1 − sinx°)^2`
`dy/dx = (π/(180)cosx°(1 − sinx° + 1 + sinx°))/(1 - sinx°)^2`
`dy/dx = (πcosx°)/(90(1 − sinx°)^2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If y = log (sec x + tan x), find `dy/dx`.